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Abstract
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The standard definition is that a setX is connected
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Fig. 1. A finite set of points and its minimal spanning tree. The weight of an edge is the Euclidean distance between the points it joins.

In order to computeC.�/; D.�/ andI .�/ numerically, we need an appropriate way to organize the finite point-set
data. The structure we use is a graph — the MST [26]. This choice was inspired by Yip’s [27] work on computer
recognition of orbit structures in two-dimensional area-preserving maps. Section 3.1 describes why the edge lengths
of the MST naturally define the resolutions at which one should see a change in the number of components. In fact,
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Conversely, if the MST of a finite set of points, X, has largest edge length
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finding the diameter of that set of points. Finding the diameter of a set ofn points in the plane is an order O.n logn/

algorithm, since the computations can be restricted to points lying on the boundary of the convex hull. For subsets
of higher-dimensional spaces, this restriction does not necessarily help and the algorithm we use is the brute-force
comparison of distances between all pairs of points, which is O.n2/ [26].

Finally, we must address the problem of how to determine the finest appropriate resolution,�, as discussed at
the beginning of Section 3. To do this, we examine how the number of isolated points in the�-decomposition of
the setX varies with resolution, i.e., the functionI .�/. A point, x, is isolated at resolution� if d.x; X\x/ ≥ �. In
terms of the MST, a point is isolated at resolution� if all edges incident to it have length longer than�. In all of the
examples below, the underlying sets are perfect, so the finite point-set approximation is “bad” at any resolution for
which there are isolated points. It follows that the resolution at which we start to see isolated points is one way to
estimate�, i.e.,� = inf {� : I .�/ = 0}. The validity of this approach is supported by the numerical evidence given
in Section 4; the data forC.�/ andD.�/ blur at the resolution at which isolated points are first detected.

4. Examples

In this section we present some examples that illustrate the behavior of the number of�-components,C.�/,
the largest diameter,D.�/, and the number of isolated points,I .�/, for fractals with different topology. The goal
is to show that these quantities give useful information about the topology. The first examples are relatives of
the Sierpinski triangle. These sets are generated from a family of iterated function systems (IFS). The Hausdorff
dimension of each set is identical, even though they have different topological structure, as the disconnectedness
and discreteness indices highlight. For these fractals, we show that the cutoff resolution decreases when the number
of data points is increased, which is not surprising since more points sampled from an attractor constitute a better
approximation of the underlying set. We also vary the way in which the data cover the set and find that for a fixed
number of points the cutoff resolution is a minimum when the data is uniformly distributed. Again, this is exactly
what we expect, since isolated points appear at larger values of� when points are not evenly spaced.

We next present a number of Cantor set examples to illustrate different types of scaling behavior in
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Fig. 4.C.�/; D.�/ andI .�/ for the Sierpinski triangle. The top row gives results for 104 uniformly distributed points on the fractal and the
bottom row for 105 points. All axes are logarithmic. The horizontal axis range is 10−5 < � < 1. The solid lines representC.�/ andD.�/ for
ideal data; the dots are the computed values.

A finite point-set approximation to the triangle and the corresponding minimal spanning tree are shown in Fig. 3.
The underlying set is connected and perfect, so we expect to seeC.�/ = 1; D.�/ = √

2, andI .�/ = 0 for � > �.
This is reflected by the calculations ofC.�/ andD.�/ for 104 and 105 point approximations to the triangle, as shown
in Fig. 4. We see that for� above a threshold value, the computed values ofC.�/ andD.�/ are in exact agreement
with our expectations. The point at whichC.�/ andD.�/ deviate from the ideal values is the value of� at which the
number of isolated points,I .�/, becomes positive. This" value is, of course, the cutoff resolution� discussed in
Section 3.2. At finer resolutions, i.e.,� < �, we see a sharp transition in the number of connected components from
one to the number of points in the set; the diameters show a correspondingly sharp decrease. Both these effects are
due to the narrow distribution of edge lengths of the MST. Clearly, the value of� depends on the number of points,
N , covering the set. For the 104 point approximation,� ≈ 0:008 and forN = 105; � ≈ 0:0022; We expect the
relationship to be� ≈ 1=

√
N , since the data is homogeneously distributed on a subset ofR

2. This is supported by
the data in Fig. 5a. Here, we plot cutoff resolution versus the number of points for 103 ≤ N ≤ 105; the slope of the
least-squares fit line is−0:58.

The results discussed so far are for uniformly distributed data; we now look at nonuniformly distributed data.
As described earlier, we change the way an orbit covers the IFS attractor by choosing the functionsf1; f2, andf3

with different probabilities. To generate Fig. 6a, we setp1 = 0:05 andp2 = p3 = 0:475. This highly nonuniform
distribution of points induces perceptible changes in theC.�/; D.�/ andI .�/ data, Fig. 7, but the graphs remain
qualitatively similar to those in Fig. 4. The cutoff resolution is significantly larger:� ≈ 0:04 compared with 0:008
for the uniform distribution with the same number of points. The growth in the number of�-components for� < �
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Fig. 5. (a) Cutoff resolution,�, as a function of the number of points, 103 ≤ N ≤ 105, covering the Sierpinski triangle for two values ofp1; .d/

marks data for the nonuniform distribution withp1 = 0:05; .N/ marks data forp1 = 1
3 , i.e., a uniform distribution, and (b) cutoff resolution as

a function ofp1 for 104 data points on the Sierpinski triangle. The error bars are the standard deviation about the mean of 20 calculations of�

for each value ofp1.

is also less rapid than that for the uniform data. Both these changes are due to a greater spread in the edge lengths
of the MST. The geometry of the distribution is reflected in the graph ofD.�/; the densely covered diagonal means
D.�/ = √

2 for �-values significantly less than�. We can lower the cutoff resolution by increasing the number of
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Fig. 6. (a) 104 points on the Sierpinski triangle generated by settingp1 = 0:05 andp2 = p3 = 0:475, and (b) the corresponding MST.

�n = �0

2n
; C.�n/ =

{
3n + 2 · 3.n−1/=2 if n is odd;

3n + 3n=2 if n is even;
D.�n/ = D0

2n−1
for n ≥ 3:

These expressions giveγ = log 3=log 2 ≈ 1:585 and� = 1.
We can see in Fig. 9 that the numerical calculations agree very well with the theory down to the cutoff resolution

� ≈ 0:003. When� < �, the computed values ofC.�/ are larger than the predicted values because isolated
points are counted as extra components. For still smaller values of�, every point is resolved as an isolated point
and theC.�/ curve levels off. The meaningful portion of the data — between these extremes — shows a staircase
periodicity about a linear trend. The slope of the linear trend is an estimate ofγ . We determineγ numerically,
using a least-squares fit, to be 1:41± 0:05. This is lower than the true limiting value given above (1.58) because of
second-order effects at the relatively large values of� for which theC.�/ data are valid. We estimate the slope of
the true curve over the same range to be 1.48, which is closer to the value computed above.

The numerically calculated values ofD.�/ also show a staircase periodicity about a linear trend. The data have
a systematic bias for the jumps at slightly larger values of� than predicted by theory. This is due to finite data

Fig. 7.C.�/; D.�/ andI .�/ for the nonuniformly distributed data set in Fig. 6. All axes are logarithmic. The horizontal axis range is 10−5 < � < 1.
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Fig. 8. (a) 104 points on the Cantor set generated by (2), and (b) the corresponding MST.
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Table 1
This table summarizes values ofγ and� for Cantor subsets of the planea

Data set dimB γ �

Fig. 12a 1.262 1:23± 0:02 0:96± 0:04
Fig. 12b 1.126 1:11± 0:02 1:00± 0:03
Fig. 14a 1.131 1:13± 0:01 0:98± 0:03
Fig. 14b 2 0:80± 0:05 0:46± 0:05
Fig. 16 1:21 < dimB < 1:34 1:36± 0:03 0:95± 0:05

aThe numbers are estimated using a least-squares linear fit to logarithmic plots ofC.�/ and D.�/, respectively; the error margins are
estimated by varying the scaling range; the second column gives the box-counting dimension, dimB , for each set; these numbers are computed
using formulas from Falconer [32].

data for a 105 point approximation, giving a value ofγ = 1:55± 0:03. This is in very close agreement with the
theoretical value ofγ = log 3=log 2 ≈ 1:585.

4.2. Cantor sets in the plane

One of our objectives is to use our techniques to identify and characterize phase space structures in dynamical
systems. Cantor sets are often present in chaotic dynamical systems, so it is useful to examine some simple Cantor
set examples to gain a better understanding of the different types of scaling that can occur in theC.�/ andD.�/

graphs. In Figs. 12, 14 and 16, we show five Cantor sets in the plane. In each case, the orbit has 50 000 points. Four
of these have zero Lebesgue measure and one (Fig. 14b) has positive measure, so it is termed a fat Cantor set (this
is analogous to the term “fat fractal” for fractals with positive measure [31]). All are attractors of iterated function
systems of the form

S = f [S] = f1[S] ∪ f2[S] ∪ f3[S] ∪ f4[S]:

The generating functions,fi , become increasingly complex in this series of examples. The three simplest involve
only affine transformations and another uses conformal functions; the functions that generate the fat Cantor set
cannot be written in closed form. The geometric structure of each set is reflected in the type of staircase seen in
the graphs ofC.�/ andD.�/. For the four examples with zero Lebesgue measure, we expect to seeγ = dimB , the
box-counting dimension; this is supported by our results, summarized in Table 1. For the Cantor set with positive
measure, the value ofγ is significantly different from the dimension. We again observe, for all of the examples,
that the cutoff resolution,�
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Fig. 12. Cantor sets generated by iterated function systems of four similarity transformations. Both sets have 50 000 points: (a) similarities with
contraction ratio1

3 , and (b) the upper two similarities have ratio1
4 and the lower two have ratio13 .

integersm andn, wherel is one of the two longest edges. Values ofγ and�, presented in Table 1, are again very
close to the expected values.

To generate the set in Fig. 14a, more general affine transformations are used, each contracting by1
3 horizontally

and 1
4 vertically. The corresponding graphs ofC.�/ andD.�/ in Fig. 15 show the now familiar staircase scaling

Fig. 13.C.�/; D.�/ andI .�/ for the Cantor sets in Fig. 12. The top row is data for Fig. 12a; the second row is for Fig. 12b. All axes are
logarithmic. The horizontal axis range is 10−5 < � < 1. The solid lines representC.�/ andD.�/ for ideal data; the dots are the computed values.
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Fig. 14. Two Cantor sets with largest gaps of1
2 and 1

3: (a) a set generated by an IFS of four affine transformations with horizontal contraction

of 1
3 and vertical contraction of14 , and (b) a fat Cantor set, generated as the cross product of two Cantor sets of positive measure in the real line.

pattern. Compared to the second Cantor set example, the larger steps in these graphs reflect the more regular
geometric structure of the set.

The fourth example is a Cantor set with positive Lebesgue measure and therefore a dimension of two. It is possible
to represent this set as the attractor of an iterated function system of the general form above. The functions involved,

Fig. 15.C.�/; D.�/ andI .�/ for the 2D Cantor sets in Fig. 14. The top row is data for Fig. 14a; the second row for Fig. 14b, the fat Cantor set.
All axes are logarithmic. The horizontal axis range is 10−5 < � < 1.
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Fig. 16. A Cantor set generated by an IFS consisting of four nonlinear affine transformations, each mapping the unit circle into a circle of radius
1
3 : (a) the data set with circle boundaries, and (b) a close-up of one of the four clusters.

however, are limits of piecewise linear approximations and it is not possible to write them in closed form. Instead,
we generate the set as the cross product of two positive measure Cantor subsets of the unit interval. These sets
are constructed as follows: at each level,n ≥ 1; 2n−1 gaps of lengtha=2pn−1 are removed from the center of an
interval remaining from leveln − 1. The sum of the gap lengths isa=.2p−1 − 1/; choosingp anda to make this
length less than one ensures the Cantor set has positive measure. It is easy to recursively generate the end points
of the gaps (down to some level) and these points are used as the finite point-set approximation. For the set in

1
ffit

1p
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Fig. 18. An orbit on the H́enon attractor.

of the formfk.z/ = 1
3z2 + ck, wherez = x + iy, and the translations,ck for k = 1; : : : ; 4, take the values

{±1
2; ±1

2i}. Notice that although we choosefi with equal probability, the nonlinearity introduces a nonuniformity
to the distribution of points over the Cantor set. The cutoff resolution� ≈ 5 × 10−4 is nevertheless comparable
to the previous examples with uniformly distributed data. Scaling in the graphs ofC.�/ andD.�/ occurs in two
distinct� intervals, see Fig. 17. For 0:005< � < 1, there are three shallow steps reflecting the large-scale structure
that is visible in Fig. 16a. The second portion of the data, for� < � < 0:005, has a steeper slope, corresponding
to the limiting small-scale structure of the set. The values ofγ and� given in Table 1 are slopes of theC.�/ and
D.�/ over the interval� < � < 0:005. We find, as for the previous zero-measure Cantor sets, thatγ is close to the
box-counting dimension and� ≈ 1.

4.3. Examples from dynamical systems

Our last two examples are Cantor sets from iterated maps.

Fig. 19.C.�/; D.�/ andI .�/ data for two orbits on the H́enon attractor. The crosses.+/ represent calculations for the orbit of 104 iterates and
the circles.s/ are for an orbit with 5× 104 points. All axes are logarithmic. The horizontal axis range is 10−5 < � < 1.
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Fig. 20. (a) A close-up of the H́enon attractor. The dark spots are points in the three cross-sections considered in the text: slices at
x = 0:302435; x = 0:5 andy = 0, and (b) a small part of the slice atx = 0:302435,y = 0:22 that shows the folding of the attractor.
The pairs of vertical lines are the boundaries of the different subslices of widths 2× 10−5; 2 × 10−6 and 2× 10−7.

4.3.1. The Hénon attractor
Fig. 18 shows the well-known Hénon attractor, generated by iterating the map

x̃ = y + 1 − ax2; ỹ = bx; (4)

with parameter valuesa = 1:4 andb = 0:3.
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Fig. 21. Top row:C.�/, middle:D.�/, and bottom:I .�/ data for three sections of the Hénon attractor. The circles.s/ represent calculations for
a section of width 2× 10−4, the crosses (+) for one of width 2× 10−5, the squares.h/ of width 2× 10−6, and the stars.∗/ width 2× 10−7.
All axes are logarithmic. The horizontal axis range is 10−8 < � < 1.

cross-section can therefore not be a Cantor set; though of course, removing any fold-tangency points does leave a
Cantor set.

The sections atx = 0:5 andy = 0 have simpler structure. The graphs ofD.�/ show the now familiar staircase
structure of a Cantor set. The flat segments in each graph ofD.�/ are due to the finite width of each slice, making
the data appear like a Cantor set of lines. Values ofγ and� are calculated from theC.�/ andD.�/ data for the
thinnest slice at each section. The results are summarized in Table 2. The multifractal nature of the Hénon attractor
[34] means that we expect to see the value of the dimension vary for different cross-sections. For the three examples
given here, though, the variation is not significant.

The above results give strong numerical support for the common belief that cross-sections of the Hénon attractor
are Cantor sets. The box-counting dimension of the Hénon attractor is estimated to be about 1:27 [34,35]. Results
about the dimension of intersections of sets [32] imply that the dimension of a cross-section through the Hénon
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Table 2
Values ofγ and� for the three sections of the Hénon attractor shown in Fig. 20

Section γ �

x = 0:302435 0:25± 0:01 0:9 ± 0:1
x = 0:5 0:26± 0:01 0:85± 0:04
y = 0 0:27± 0:01 0:88± 0:02

attractor should be 1:27 − 1 = 0:27. The values ofγ given in Table 2 are in close agreement with this value,
providing further support for our conjecture that Cantor sets of zero-measure haveγ equal to the box-counting
dimension.
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Fig. 23.C.�/; D.�/ andI .�/ data for the two cantori: (top row) data for the cantorus in Fig. 22a, and (bottom row) data for the cantorus in Fig.
22b. All axes are logarithmic. The horizontal axis range is 10−15 < � < 1.

A ≈
(

1:9152 −2:0358

0:5214 0:0847

)
:

The graphs ofD.�/ in Fig. 23 are similar to those for previous Cantor sets. These graphs tell us that the
cantori are totally disconnected, becauseD.�/ → 0. Again, we estimate� to be very close to one: for the
cantorus of Fig. 22a� = 1:09 ± 0:05; for that of Fig. 22b� = 1:01 ± 0:02. The graphs ofC.�/,

Fig. 24. C.�/ versus log.�/ for the two cantori of Fig. 22a and 22b, respectively. All axes are logarithmic. The horizontal range is
−20 < log.�/ < −0:1.
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