
THEQuestQuestQuest of theof theof the MCM
Conquering the Math Contest in Modeling

Brian Camley Pascal Getreuer Bradley Klingenberg

Every year, the Consortium for Mathematics and its Applications (CCCOMAOMAOMAPPP) sponsors the Mathematical

Contest in Modeling (MCM), an international contest for undergraduates. We will discuss our strategy for

developing models, writing the paper, the contest timeline, and team dynamics.

Contents

1 What is the MCM? 2

2 A Strong Paper 4

3 A Strong Team 9

4 A Strong Timeline 12

5 Searching for the Optimal Solution 16

6 Common Failures to Avoid 19

7 Closing Remarks 20

A 2006 Questions 20

1

1 What is the MCM?

In the MCM, three-person teams are given 96 hours to develop mathe

where papers are more carefully read and ranked into several tiers. By percentage†, the tiers are

• 60% Successful Participant

• 25% Honorable Mention

• 15% Meritorious

• 1%-2% Outstanding

Additionally, two teams receive the Ben Fusaro Prize, recognizing the development of a creative model and

a paper which is pleasant to read. Outstanding papers are considered for the SIAM Prize, the MAA Prize,

and the INFORMS Prize from the respective societies.

Contest Rules & Logistics

Your team must be registered for the contest by early February. Once the contest begins, you may not add

or change a teammate, though you may remove a teammate if necessary. A team may have at most three

students, and no student may belong to more than one team.

Papers must be typed and in English. Solution submissions must be paper only; non-paper materials such

as computer disks are not accepted. At registration, each team is assigned a control number. The team

control number must appear at the top of every page, along with the page number, for example:

Team #321 Page 6 of 13

Other than the control number, the paper must in no way identify the students, the advisor, or the

school.

For more detailed contest rules, see

www.comap.com/undergraduate/contests/mcm/instructions.php.

†Tier percentages are approximate; actual percentages vary from year to year.

3

History

The University of Colorado at Boulder has a strong history in the MCM:

2000 Honorable Mention Jim Barron, Cristy Shannon, John Herman

Background Research

Your initial research will be critical in framing the problem. The MCM, like any research, begins

by understanding the problem and reading previous research. Learn the basics of the problem context:

existing models, previous approaches, and especially the nomenclature.

When we solved the 2004 fingerprint problem our first year, we spent a very unproductive first day before

we found the concept of “minutiae” in fingerprints. This led us to the central postulate of our paper: two

fingerprints are identical if they would be identified as the same person by the FBI. If we had found Stoney

and Thornton’s paper “A Critical Analysis of Quantitative Finge

Stylistic Considerations

It is common to show a developing “story” of your solution in the body of the paper. As in any technical

writing, write plainly and favor shorter words over longer ones. Particularly, it can be seen that the

flamboyant, obdurate, and ostensibly decorous misuse of the passive tense and excessive vocabulary

tends, thereby, to result in long, awful sentences.

Among hundreds of papers, it helps if your paper has a unique, catchy title. If possible, set aside time to

brainstorm paper titles. Don’t use anything pretentious like A Novel Approach to...: Just don’t. Seriously.

We wouldn’t mention it if it didn’t keep on happening.

As part of anyone’s writing education, worthwhile references are Strunk & White’s The Elements of Style

[16] and Williams’ Style: Toward Clarity and Grace [17]. Specifically on technical writing style, see also

the Handbook of Technical Writing by Brusaw [1].

Our basic philosophy of writing is: clarity before grammar. In this sense, we recommend Strunk & White

not for its grammar rules (which are questionable), but for its own style of simplicity.

Programming

In any MCM team, at least one team member should be comfortable with a computer programming lan-

guage. Prototyping languages (high-level interpreted languages like MATLAB, Python, and Java) are partic-

ularly well-suited for the contest. However, the best choice of language is one where your team can most

comfortably perform the following essentials.

• Visualize data. Line plots, surface plots, histograms, and other means to visualize data are invaluable

in understanding a problem. If your choice programming environment is graphically-limited, learn

to export data to Microsoft Excel, Gnuplot, or other graphing software for visualization.

• Numerical algorithms. Before the contest, review numerical algorithms for fundamentals like inter-

polation, optimization, linear algebra, and solving differential equations. Be prepared to implement

(or reuse) code for common numerical algorithms, see for example [6, 14]. Environments like MAT-

LAB include extensive numerical routines for a variety of problems. Make use of these tools and avoid

reinventing the wheel. For example, never roll your own linear algebra code. Smarter people have

spent years creating LINPACK and other systems—use them.

• Debug. Writing code naturally involves fixing code. Know how to use the debugger tools offered

by your programming environment. Use strategies like saving multiple versions, modular program-

ming, and descriptive commenting to promote accurate code. (But don’t get too carried away—your

primary goal is correct results, not computer science poetry.)

• File I/O. Especially if your program is unstable and takes a long time to run, you need to be able to use

intermediate results. A good time-saving precaution is to save progressive results to the harddrive.

For example, a simulation that runs for 45 minutes could write updates to the harddrive every three

minutes.

Of course, a computer-savvy team need not restrict themselves to one programming language and instead

use several. Our first year, we had one person programming in MATLAB, one in Perl, and one in C with side

calculations on a TI-86. However, we have found that when there is more than one programmer, sticking

to one language promotes code reuse and collaboration.

Writing

Writing, as we continue to emphasize, deserves as much attention as solving the problem itself. Under

the tight 4-day contest timeframe, it is vital to start writing as soon as possible, starting alongside initial

research.

We recommend LATEX as the best means for producing professional-quality scientific writing, especially as an

alternative to Microsoft Word. LATEX handles equations and mathematical symbols natively, in addition to

10

all of the bibliographical formatting, labels and cross-referencing, and page-numbering that is ridiculously

• Citations.

later half of the contest. Furthermore, a lighter schedule in the later half means more time can be devoted

to the writing.

Most importantly, make sure you will be healthy and fully rested for Thursday.

Thursday: The Contest Starts

The contest officially starts at 6:00 pm†. At this time, the contest problems are posted at

www.comap.com/undergraduate/contests/mcm and www.mirror.comap.com/mcm.

research. What analysis, experiments, or background research cou

• Sunday: Stop working on the problem and work as a team on writing.

• Monday:

Random Ascent Hill Climb

y ← randso l ()

for i = 1 ,. . . , N do

{

x ← randso l ()

i f f (x) > f (y)

y ← x

}

6 Common Failures to Avoid

Our most insistent advice is marked with ! in the preceding sections. In addition, take caution against

the following easy mistakes:

• Don’t charge into the contest blindly. Someone has thought about your problem (or a related

one) before. Do background research. But don’t rely on only internet sources, review the literature

thoroughly. Use school resources.

• Don’t rate solutions arbitrarily. Find a metric to rate your solution, preferably a standard metric

from literature.

• Avoid arbitrary or unnecessary assumptions. Do not egregiously over-simplify the problem or lose

sight of the “key” question. For instance, the tollbooth problem was about the competition of queuing

and merging. Some teams simplified the merging out of the problem!

• Avoid modeling everything in one monolithic simulation. Keep your thinking modular: use dif-

ferent models for different problems, and break a difficult problem into smaller problems. This also

makes having multiple models easier.

• Don’t pick and compare anecdotal solutions. Attempt to cover a fair amount of the solution space.

Don’t be afraid of brute force solutions, but realize it is unlikely that picking five “representative”

7 Closing Remarks

The MCM is a lot of fun. It is an opportunity to think creatively, fle

PROBLEM B: Wheel Chair Access at Airports

One of the frustrations with air travel is the need to fly through multiple airports, and each stop generally requires

each traveler to change to a different airplane. This can be especially difficult for people who are not able to easily

walk to a different flight’s waiting area. One of the ways that an airline can make the transition easier is to provide a

wheel chair and an escort to those people who ask for help. It is generally known well in advance which passengers

require help, but it is not uncommon to receive notice when a passenger first registers at the airport. In rare instances

an airline may not receive notice from a passenger until just prior to landing.

Airlines are under constant pressure to keep their costs down. Wheel chairs wear out and are expensive and require

maintenance. There is also a cost for making the escorts available. Moreover, wheel chairs and their escorts must

be constantly moved around the airport so that they are available to people when their flights land. In some large

airports the time required to move across the airport is considerable. The wheel chairs must be stored somewhere, but

space is expensive and severely limited in an airport terminal. Also, wheel chairs left in high traffic areas represent

References

[1] C. BRUSAW. Handbook of Technical Writing. St. Martin’s Press.

[2] K. CLINE. “Kelly’s Guide to the MCM.”

www.carroll.edu/∼kcline/mcm.html

[3] GABLER, GRAY, KUCIC AND SHODHAN. “How to Prototype a Game in Under 7 Days.”

http://www.gamasutra.com/features/20051026/gabler 01.shtml

[4] D. BEASLEY, D. BULL, AND R. MARTIN. “An overview of genetic algorithms: Part 1, fundamentals.”

University computing, 1993, 15(2), 58-69.

[5] D. BEASLEY, D. BULL, AND R. MARTIN. “An overview of genetic algorithms: Part 2, Research topics.”

University computing, 1993, 15(4), 170-181.

[6] R. BURDEN AND J. FAIRES. Numerical Analysis. Brooks Cole, 2001.

[7] D. GOLDBERG. Genetic algorithms in search, optimization, and machine learning. Addison-Wesley

Pub. Co., 1989.

[8] J.A. HORNE. “Sleep loss and ‘divergent’ thinking ability.” Human Sciences Department, Loughborough

University, Leicestershire, England. Dec. 1988.

[9] J. KENNEDY AND R. EBERHART. “Particle Swarm Optimization.” Proc. IEEE Int’l. Conf. on Neural Net-

works, 1995.

[10] S. KIRKPATRICK, C. D. GELATT, AND M. P. VECCHI. “Optimization by Simulated Annealing,” Science,

vol. 220, no. 4598, pp. 671-680, 1983.

[11] J. MAXWELL. The 21 Irrefutable Laws of Leadership. Thomas Nelson, Jan. 1998.

[12] J. A. NELDER AND R. MEAD. “A Simplex Method for Function Minimization.” Comput. J. 7, 308-313,

1965.

[13] J. NOCEDAL, S. WRIGHT, S. J. WRIGHT. Numerical Optimization. Springer Verlag, 2006.

[14] W. PRESS, B. FLANNERY, S. TEUKOLSKY, AND W. V

