
ar
X

iv
:2

21
1.

07
82

3v
3 

 [
ec

on
.E

M
] 

 2
0 

M
ar

 2
02

4

Graph Neural Networks for Causal

Inference Under Network Confounding
∗

Michael P. Leung† Pantelis Loupos‡

March 21, 2024

Abstract. This paper studies causal inference with observational network

data. A challenging aspect of this setting is the possibility of interference in

both potential outcomes and selection into treatment, for example due to peer

effects in either stage. We therefore consider a nonparametric setup in which

both stages are reduced forms of simultaneous-equations models. This results in

high-dimensional network confounding, where the network and covariates of all

units constitute sources of selection bias. The literature predominantly assumes

that confounding can be summarized by a known, low-dimensional function of

these objects, and it is unclear what selection models justify common choices

of functions. We show that graph neural networks (GNNs) are well suited to

adjust for high-dimensional network confounding. We establish a network ana-

log of approximate sparsity under primitive conditions on interference. This

demonstrates that the model has low-dimensional structure that makes estima-

http://arxiv.org/abs/2211.07823v3


Leung and Loupos

1 Introduction

Treatment assignment is said to be unconfounded if it is as good as random within

subpopulations of observationally equivalent units. In settings where the stable unit

treatment value assumption (SUTVA) is plausible, units with identical covariates are

naturally considered observationally equivalent. However, when units are connected

through a network, they may differ on other observed dimensions that may confound

causal inference if SUTVA is violated and interference is mediated by the network.

These dimensions include, for example, the number of type-x neighbors, the number

of type-x neighbors with m neighbors of type y, and so on through higher-order

neighbors.

Existing formulations of unconfoundedness only utilize a small subset of these

dimensions. For example, a common set of controls used in the literature is the

vector consisting of own covariates, number of neighbors, and average covariates of

neighbors. This choice may be difficult to justify in practice due to a lack of behavioral

models of selection. Neighbor covariates may influence selection into treatment in

more complex ways not adequately captured by the mean. Furthermore, this choice

of controls implies no confounding from higher-order neighbors, which we show rules

out economically interesting sources of interference in treatment selection, such as

endogenous peer effects.

In this paper, we study estimation and inference for treatment and spillover effects

under a fully nonparametric formulation of unconfoundedness motivated by a model

of selection. To allow for peer effects, selection is governed by the reduced form of a

simultaneous-equations model, which is a function of the entirety of X, the matrix

of all units’ covariates, and A, the network adjacency matrix. As a result, it is not

generally possible to summarize confounding by a simple low-dimensional function of

these objects. Our unconfoundedness condition therefore considers units observation-

ally equivalent if they occupy identical positions in the network, meaning that they

match on all observed neighborhood and higher-order neighborhood dimensions.

Existing methods that rule out complex forms of interference in selection may

result in biased estimates of treatment and spillover effects. For example, consider

the causal effect of vaccine adoption on illness. With peer effects in vaccine adoption,

vaccinated individuals tend to have more vaccinated direct and indirect social con-

tacts, and a simple comparison of adopters and nonadopters may overstate vaccine

2
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utilize the model of approximate neighborhood interference (ANI) proposed by Leung

(2022a), which posits that interference in the outcome stage decays with network path

distance. Leung shows that ANI allows for endogenous peer effects but focuses on

a setting with randomized assignment. In observational settings, it stands to reason

that peer effects in selection may be a possibility. We theref



GNNs for Network Confounding

We provide conditions under which the doubly robust estimator is approximately

normally distributed as the network size grows large. This type of result is well known

for i.i.d. data (e.g. Farrell, 2018), but it is nontrivial to extend to our setting since

we allow for a complex form of network dependence. For example, asymptotically

linearizing the doubly robust estimator requires a new argument due to dependence,

and application of an appropriate CLT requires verification of a high-level weak de-

pendence condition under a nonparametric model with outcome and selection stages

both governed by simultaneous-equations models. For inference, we utilize a network

HAC estimator due to Kojevnikov et al. (2021) and propose a new bandwidth that

adjusts for estimation error in the first-stage machine learners.

We substantiate the theory in a simulation study and empirical application to

microfinance diffusion. The simulations demonstrate that the use of GNNs can sub-

stantially reduce bias relative to conventional choices of network controls even with

shallow architectures. The empirical illustration revisits the microfinance diffusion

application of He and Song (2024). We show how our estimands can capture comple-

mentary aspects of diffusion relative to their “average diffusion at the margin” mea-

sure. Our theoretical framework allows for more complex diffusion processes without

requiring the econometrician to prespecify the maximum number of within-period

rounds of diffusion. Finally, by including richer controls that account for network

confounding, we find more attenuated diffusion effects.

1.2 Related Literature

There is a large literature on interference, much of which focuses on randomized

control trials (e.g. Athey et al., 2018; Li and Wager, 2022; Toulis and Kao, 2013).

We contribute to a growing recent literature on unconfoundedness, much of which

operates in a partial interference setting where units are partitioned into disjoint

groups with no interference across groups (e.g. Liu et al., 2019; Qu et al., 2022).

Studying a network interference setting, Veitch et al. (2019) propose to use “node

embeddings” as network controls, which are learned functions of the graph. Since

node embeddings can be obtained from a variety of methods, there remains the issue

of justifying a particular choice of network controls. GNNs can be interpreted as a

method of estimating node embeddings (see §3), and our behavioral model provides

justification for their use. We defer to §2.1 a more detailed review of the literature

5
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i’s neighbors and the elements of the same set of K ą 1 as i’s higher-order neighbors.

A unit i’s degree is npi, 1q, the number of neighbors.

2 Setup

Let Nn “ t1, . . . , nu be the set of units connected through the network A. Each unit

i P Nn is endowed with unobservables pεi, νiq P R
dε ˆ R

dν and observables Xi P R
dx .

The model primitives determine outcomes and treatments according to

Yi “ gnpi,D,X,A, εq and Di “ hnpi,X,A,νq, (1)

respectively, where X “ pXiqni“1 is the matrix with ith row equal to X 1
i; Y , D, ε,

and ν are similarly defined; and tpgn, hnqunPN is a sequence of function pairs such

that each gnp¨q has range R and hnp¨q has range t0, 1u. The econometrician observes

pY ,D,X,Aq. Our analysis treats pA,X, ε,νq as random, but the asymptotic theory

in §4 conditions on pX,Aq to avoid imposing additional assumptions on its depen-

dence structure.2

We view the timing of the model as follows. First, nature draws the primitives

pA,X, ε,νq. Next, units select into treatment, potentially based on other units’

decisions, and hnp¨q is the reduced-form outcome of that process. Finally, gnp¨q is the

reduced form of the subsequent process that generates outcomes. Because gnp¨q and

hnp¨q may depend on the primitives of all units, the setup allows Yi and Di to be

outcomes of simultaneous-equations models with endogenous peer effects, as shown

in the next examples.

Example 1 (Linear-in-Means). Consider the outcome model

Yi “ α ` β

řn
j“1AijYj
řn
j“1Aij

`
řn
j“1AijZ

1
j

řn
j“1Aij

γ ` Z 1
jδ ` εi,

where Zi “ pDi, X
1
iq1 (Manski, 1993). The coefficient β captures endogenous peer
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denote the row-normalized adjacency matrix and 1 the n-dimensional vector of ones,

if A is connected, the reduced form of the model can be written in matrix form as

Y “ α

1 ´ β
1 ` Zδ ` γβ

8
ÿ

k“0

βkÃk`1
Z `

8
ÿ

k“0

βkÃk
ε.

This characterizes Yi as a function gnpi,D,X,A, εq.

Example 2 (Binary Game). Consider the binary analog of Example 1 but for selec-

tion into treatment:

Di “ 1

#

α` β

řn
j“1AijDj
řn
j“1Aij

`
řn
j“1AijZ

1
j

řn
j“1Aij

γ ` Z 1
iδ ` νi ą 0

+

. (2)

Unlike Example 1, there may exist multiple equilibria. The equilibrium selection

mechanism is a reduced-form mapping from the primitives pX,A,νq to outcomes

D and therefore characterizes Di as a function hnpi,X,A,νq. This formulation

corresponds to a game of complete information. In a game of incomplete information,

as modeled by Xu (2018) for instance, a unit i’s information set is pνi,X,Aq. Here

an analog of (2) holds with each Dj replaced with σjpX,Aq, the equilibrium belief

that Dj “ 1. This characterizes Di as a function hnpi,X,A, νiq.

Example 3 (Diffusion). He and Song (2024) study the following two-period diffusion

model. Let Di denote i’s decision to adopt microfinance in period 0 and Yi its decision

in period 1. Their equations (2.4) and (3.6) posit that

Yi “ gnpDN pi,Kq, εiq and Di “ 1tW 1
iγ ą νiu,

whereWi is a known function of pX,Aq andK is the maximum distance that adoption

decisions can diffuse through the network between periods 0 and 1. We provide a more

detailed comparison of our models in §7.

Given specification (1), we define potential outcomes as

Yipdq “ gnpi,d,X,A, εq.

Confounding may arise first because Yipdq is potentially correlated with Di due to

8
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the high-dimensional observables pX,Aq and second because of dependence between

unobservables that drive outcomes ε and those that drive selection ν. We restrict the

second source of confounding.

Assumption 1 (Unconfoundedness). For any n P N, ε KK ν | X,A.

As discussed below, unconfoundedness conditions used in the existing literature addi-

tionally limit the first source of confounding to known summary statistics of pX,Aq.
Ours is analogous to standard formulations of unconfoundedness under SUTVA (εi K
K νi | Xi) since we do not impose further restrictions on the nature of observed

confounding.

Because the econometrician only observes a single network, a large-sample theory

requires restrictions on interference in order to obtain some form of weak dependence.

We next specify a nonparametric model of decaying interference that accommodates

the previous examples. For any S Ď Nn, let DS “ pDiqiPS, and similarly define XS

and other such submatrices. Let AS
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counterfactual s-neighborhood outcomes.3 The error from approximating the ob-

served outcome with the s-neighborhood counterfactual is bounded by γnpsq, which

decays with the neighborhood radius s. This formalizes the idea that Yi is primarily

determined by units relatively proximate to i, so that the further a unit is from i, the

less it influences i’s outcome. The second equation imposes the analogous requirement

on Di.

Example 4. For the linear-in-means model in Example 1, an argument similar to

Proposition 1 of Leung (2022a) shows that (3) holds with supn γnpsq ď C|β|s for some

C ą 0. For the binary game in Example 2, an argument similar to Proposition 2 of

Leung (2022a) establishes (4) with supn ηnpsq decaying at an exponential rate with s.

Finally, for the He and Song (2024) diffusion model in Example 3, Yi only depends on

D through DN pi,Kq, so (3) holds with γnpsq “ c 1ts ă Ku for some universal constant

c. In their empirical application, they use own covariates as controls, so Wi “ Xi, in

which case (4) holds with ηnpsq “ 0 for all s.

2.1 Related Literature

The standard SUTVA model and unconfoundedness condition correspond to

Yi “ gpDi, Xi, εiq and εi KK Di | Xi. (5)

To generalize this setup to allow for network interference, the typical approach in the

existing literature is as follows. Define

Ti “ fnpi,D,Aq and Wi “ qnpi,X,Aq (6)

where fnp¨q and qnp¨q are known vector-valued functions. The effective treatment

(Manski, 2013) or exposure mapping (Aronow and Samii,
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borhood interference model and unconfoundedness condition

Yi “ gpTi,Wi, εiq and εi KK Ti | Wi, (7)

which is a direct generalization of (5) (Emmenegger et al., 2022; Forastiere et al.,

2021; Ogburn et al., 2022). Here Ti entirely summarizes interference while Wi sum-

marizes confounding.

Common examples of Ti and Wi are

Ti “
˜

Di,

n
ÿ

j“1

AijDj

¸

and Wi “
˜

Xi,

n
ÿ

j“1

Aij ,

řn

j“1AijXj
řn
j“1Aij

¸

. (8)

This choice of Ti implies that Yi depends on D only through two statistics: own

treatment and the number of treated neighbors. Variation in the first component

identifies a direct treatment effect and variation in the second a spillover effect. Like

most exposure mappings used in the literature, this only depends on DN pi,1q, so the

outcome model (7) implies no interference beyond the 1-neighborhood. Likewise, this

choice of Wi implies no confounding beyond 1-neighborhood covariates.

More generally, one could restrict the outcome model to depend only on the K-

neighborhood treatments DN pi,Kq for some fixed threshold K. As shown by Leung

(2022a), this rules out economically interesting forms of interference such as endoge-

nous peer effects, which motivates the ANI condition (3). Furthermore, (7) assumes

the econometrician can correctly specify the summary statistic Ti in the outcome

model, which may be difficult to justify (Sävje, 2024).

Whereas Leung (2022a) and Sävje (2024) focus on randomized experiments, we

study observational data on economic agents that choose to select into treatment.

It then becomes important to specify a behavioral model rationalizing the choice of

controls Wi. Sánchez-Becerra (2022) is the first to provide such a model. Under

neighborhood interference (7) and an exposure mapping similar to (8), he shows that

it is sufficient to set Wi “ Xi, that is, to solely control for own covariates. Since much

of the literature utilizes controls such as (8), this raises the question of what model of

selection justifies their use or more broadly the use of “network controls” that depend

more generally on X and A.

Our model (1) provides an answer. The presence of complex interference in both

the outcome and treatment stages induces selection on pX,Aq, so that it is generally

11
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with and without at least one treated neighbor, which captures a spillover effect. For

t “ p1, 0q and t1 “ p0, 0q, it compares the average outcomes of treated and untreated

units with no treated neighbors, which captures a treatment effect. For overlap, we

need to exclude units with zero degree since a treated neighbor occurs with probability

zero for such units. This is accomplished by choosing Mn to be the subset of units

whose degree npi, 1q ” |N pi, 1q| lies in some desired set excluding zero. That is,

choose some Γ Ď R`zt0u and

Mn “ ti P
zM0734732]TJJ
/R57 11..9552 Tf
15 0 Td
8 Td
[(n)-3.4.735168(TJ
/R97 11.9552 Tf
8.88008 Td
[(0)-2.838524764]TJJ
/R97 (:5.2800 0 Td
[(n)1.825TJ
/R97 11n9552 Tf
13.559 0 Td
[(p)-0.424764]TJ
/R69 11.9552 Tf
4.56016 0 Td
[(i)2.76097(;)]TJ
/R128 11.9552 Tf
9.23984 0 Td
[(1)-2.83857]TJ
/R97 11.9552 Tf
5.88008 0 Td
[(q)-0.426806]TJ
/R122 11.28]TJ69 -17.8797 Td
[(z1 0 Td
[(`)2.480974/R97 11.9552 Tf
11.4 0 Td
[(Ď)-1.84918261]TJ
/R97 11u552 Tf
17.6402 0 Td
[(i)2.765.46;)]TJ
/R1(:5.2800 0 Td
[(a)-2.31-0.7
/R97 11(d)-459.917(9u)1.82567().9552 Tf
-311.2820.46601(M07347-4170086])1.82261(oE7011 3252l)012 T86126(2.71325J
/33.8204(r)2792(i9(d)1.25844 -13.463188(7)21589 Tfh)11.25844.23984 0 Td
[(a)-2.3707]TJ
/R97 11.W)R693327(o)-2.37766(a)-2.37296(b)1.823126(.)-541.103(d)1.82363]T(s)4.70304(o)-5]T.358(,)-3-0.126(
/R215 11.6(s)4.70304(,)-380.917(s)-5]4634668(e)3.46754(e)-237.103(d)1.82363]T 0 Td
[7(i)0.910792((p)1.82158(,)-380.6754(e).375(612-0.733126(a)-2.37704(g)-2.37704r)-0.735168(e)3.46754e)-297.651(t)1.821566(a)-2.37296(8(r)-0.7351E)-256352l)0.910792(a)1.82158(l)0.910792(i)0.910792(s)4.70304(s)-53(h)1(6(r)-0.126()33.57838(h)1.323.36]TJ
-173.76)-2.37296(f)-)-812.12(]TJ
-305.04 g)-474.143(z)3.46346(e)31.825677.6402 0 Td
[(i)2.7687828190084243.4655(r)T)-48638235 0 Td
8 Td
[(n)-3.4652 023(TJ
/R97 11iTJ
-3
/R05.88008 0 Td
[(q)-4926828192t)3.38586]TJ
552 Tf
25.439200 Td
[(R)-0.700452]TJ167]TJ
/8586]ˆ)67541
-114.36 0 Td
[(i)2.768e
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can be a complex function of pX,A,νq, and both Ti and Yi can be complex functions

of D, which makes it difficult to characterize the dependence structure necessary for

the application of a central limit theorem without additional structure.

Identification results in Leung (2024) provide conditions under which τpt, t1q has

a causal interpretation. The focus of our paper is estimation, so we provide only a

brief discussion here. Under the neighborhood interference model (7), τpt, t1q has a

transparent causal interpretation. In settings where (7) fails to hold, Leung (2024)

shows that τpt, t1q retains a causal interpretation under restrictions on interference

either in potential outcomes or selection into treatment. For example, suppose treat-

ment adoption follows a nonparametric game of incomplete information where νi is

unit i’s private information, so that Di “ hnpi,X,A, νiq (see Example 2). If pri-

vate information is independent across units conditional on pX,Aq, as is typically

assumed in structural analyses of the model (e.g. Lin and Vella, 2021; Xu, 2018), then

by Theorem 1 of Leung (2024) τpt, t1q can be written as a non-negatively weighted

average of certain unit-level effects.

Returning to the vaccine adoption example in §1, recall that
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where

τ̂ipt, t1q “ 1tTi “ tupYi ´ µ̂tpi,X,Aqq
p̂tpi,X,Aq ` µ̂tpi,X,Aq

´ 1tTi “ t1upYi ´ µ̂t1pi,X,Aqq
p̂t1pi,X,Aq ´ µ̂t1pi,X,Aq.

To estimate
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3.1 Architecture

The standard GNN architecture consists of nested, paramete
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aggregation no longer holds when the support of Xi is uncountable, so using multiple

aggregators can result in more powerful architectures (Corso et al., 2020).

For an example of Γp¨q, let µp¨q, σp¨q,Σp¨q,minp¨q, and maxp¨q be respectively the

mean, standard deviation, sum, min, and max functions, defined component-wise for

multisets of vectors. Then setting Γp¨q “ Γ1p¨q for

Γ1p¨q “
´

µp¨q σp¨q Σp¨q minp¨q maxp¨q
¯

results in an architecture utilizing five aggregation functions.

The authors combine multiple aggregators with “degree scalars” that multiply

each aggregation function by a function of the size of the multiset input npi, 1q.
The simplest example is the identity scalar, which maps any multiset to unity. This

trivially multiplies each aggregation function in Γ1p¨q above, but it is useful to consider

non-identity scalars. Let |¨| be the function that takes as input a multiset and outputs

its size. Corso et al. (2020) define logarithmic amplification and attenuation scalers

Sp¨, αq “
ˆ

logp|¨| ` 1q
δ

˙α

, δ “ 1

n

n
ÿ

i“1

log

˜

n
ÿ

j“1

Aij ` 1

¸

, α P r´1, 1s.

The choice of α defines whether the scalar “amplifies” (α “ 1) or “attenuates” (α “
´1) the aggregation function, and α “ 0 is the identity scalar. The purpose of

the logarithm is to prevent small changes in degree from amplifying gradients in an

exponential manner with each succe1
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function `p¨q:
f̂GNN P argmin

fPFGNNpLq

ÿ

iP
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As discussed in §3.1, any f P FGNNpLq is invariant, so by using GNNs to esti-
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that does not depend on i, so evaluating i’s propensity score is now only a matter of

supplying the correct i-specific inputs pπipXq, πipAqq.
We close this section with a result demonstrating that invariance is an extremely

weak requirement. In particular, it holds under minimal exchangeability conditions

on the structural primitives.

Proposition 1. Suppose for any n P N and permutation π,

fnpi,D,Aq “ fnpπpiq, πpDq, πpAqq,
gnpi,D,X,A, εq “ gnpπpiq, πpDq, πpXq, πpAq, πpεqq, and
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conditions imposed below. Define

ϕt,t1piq “ 1tTi “ tupYi ´ µtpi,X,Aqq
ptpi,X,Aq ` µtpi,X,Aq

´ 1tTi “ t1upYi ´ µt1pi,X,Aqq
pt1pi,X,Aq ´ µt1pi,X,Aq ´ τpt, t1q,

whose average over i P Mn is the doubly robust moment condition, and let

σ2n “ Var

˜

1?
mn

ÿ

iPMn

ϕt,t1piq
ˇ

ˇ

ˇ

ˇ

X,A

¸

.

Assumption 4 (Moments). (a) There exists M ă 8 and p ą 4 such that for any

n P N, i P Nn, and d P t0, 1un, Er|Yipdq|p | X,As ă M a.s. (b) There exists

rπ, πs Ă p0, 1q such that p̂tpi,X,Aq, ptpi,X,Aq P rπ, πs and
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The next assumption is used to show that tϕt,t1piquni“1 is ψ-dependent (see Definition C.1,

which is due to Kojevnikov et al., 2021
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Parts (a) and (b) are used to establish that tϕt,t1piquni“1 is ψ-dependent. Part (b)

is a Lipschitz condition that holds if potential outcomes are uniformly bounded. In

particular we can take Λnpsq “ 2M where M is the uniform bound on the ranges
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strengthens Assumption 5(b) but only mildly since we nonparametrically estimate

both nuisance functions. Since it does not require uniform convergence, it is more

readily verifiable for machine learning estimators. Part (c) is Assumption 4.1(iii) of

Kojevnikov et al. (2021). Parts (d)–(f) correspond to Assumptions 7(b)–(d) of Leung

(2022a), which are used to characterize the bias of the variance estimator. We discuss

verification of (c)–(f) in §B.2; the derivations there show that (f) is closely related to

(c).

Theorem 2. Define ϕ̃t,t1piq by replacing τpt, t1q in the definition of ϕt,t1piq with τipt, t1q “
ErYi | Ti “ t,X



Leung and Loupos

case σ̂2 would be asymptotically conservative. This can be formalized under additional

weak dependence conditions on the superpopulation as in §A of Leung (2022b).

5 Approximate Sparsity

As discussed in §3, the number of layers L in a GNN determines its receptive field,

the neighborhood pXN pi,Lq
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pWiqni“1 and ν “ pνiqni“1, define

VipW ,ν; θq “ α` β

řn

j“1AijWj
řn

j“1Aij
` δ

řn

j“1AijXj
řn

j“1Aij
` γXj ` νi `

řn

j“1Aijνj
řn

j“1Aij

where θ “ pα, β, δ, γq. We generate tYiuni“1 from the linear-in-means model, where

Yi “ VipY , ε; θyq and θy “ p0.5, 0.8, 10,´1q. We generate tDiuni“1 according to

Example 2, so that Di “ 1tVipD,ν; θdq ą 0u with θd “ p´0.5, 1.5, 1,´1q. The

equilibrium selection mechanism is myopic best-response dynamics starting from the

initial condition tD0
i uni“1 for D0

i “ 1tVip0,ν; θdq ą 0u.
The design induces a greater degree of dependence than what our assumptions

allow. The error term νi`
řn

j“1Aijνj{
řn

j“1Aij is not conditionally independent across

units unlike what Assumption 6(a) requires. Also, back-of-the-envelope calculations

indicate that peer effects are sufficiently large in magnitude that Assumption 6(d) is

violated.

We use the estimand in Example 5 whose true value is zero. About 57 percent

of units select into treatment, so the effective sample size used to estimate the out-

come regressions is around n{2 since ErYi | Ti “ t,X,As is estimated only with

observations for which Ti “ t. We report results for n “ 1000, 2000, 4000.

6.2 Nonparametric Estimators
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(2022) and Forastiere et al. (2021). For these, we estimate the nuisance functions us-

ing GLMs (logistic and linear regression) with polynomial sieves of order 1, 2, or 3.

Recall that a GNN with L “ 1 corresponds to a receptive field that only encompasses

the ego’s 1-neighborhood. This is the same as the implied receptive field of the GLM

estimators.

Table 1: Simulation results for random geometric graph

L “ 1 L “ 2 L “ 3

n 1000 2000 4000 1000 2000 4000 1000 2000 4000
# treated 567 1137 2277 567 1137 2277 567 1137 2277
H 1 3 5 1 3 5 1 3 5

τ̂p1, 0q 0.0783 0.0753 0.0680 0.0937 0.0382 0.0226 0.1288 0.0712 0.0353
CI 0.9316 0.9332 0.9324 0.9318 0.9368 0.9464 0.9360 0.9286 0.9384
SE 0.4279 0.3057 0.2166 0.5134 0.2961 0.2037 0.5745 0.3143 0.2021
Oracle CI 0.9426 0.9434 0.9358 0.9450 0.9498 0.9572 0.9464 0.9420 0.9472
Oracle SE 0.4473 0.3180 0.2190 0.5507 0.3153 0.2116 0.5994 0.3369 0.2094
W τ̂p1, 0q 0.1800 0.1701 0.1555 0.1597 0.1484 0.1356 0.1249 0.1211 0.1116
W CI 0.9160 0.9042 0.8906 0.9200 0.9136 0.9056 0.9174 0.9140 0.9114
W SE 0.4338 0.3082 0.2177 0.4311 0.3072 0.2175 0.4182 0.2998 0.2132
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A choice of L “ 2 is not unusual in the literature. Zhou et al. (2021) compute

the prediction error of GNNs on several different datasets with L “ 2, 4, 8, . . . and

find that L “ 2 has the best performance across several architectures. The fact that

GNN performance often fails to improve (and indeed can worsen) with larger L is

well known in the GNN literature, and we survey different expl
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study or later.6

7.1 Comparison with He and Song (2024)
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For the first (second) choice, τpt, t1q measures the effect of going from 0 to 1 (more than

1) adopting neighbor(s).7 This sheds light on a different dimension of diffusion relative

to the ADM. Whereas the ADM measures how many others are affected by the ego’s

adoption, our estimands quantify the effect of having multiple adopting neighbors on

the ego’s adoption. We find below that having multiple adopting neighbors has a

much larger effect than having only one.

As previously stated, He and Song (2024) define the treatment in two ways. One is

a binary indicator for having a leader in the household, the idea being that all leaders

were initially informed about microfinance and told to spread the word. However,

not all leaders adopted in the first trimester, which perhaps
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To compute the estimates, we concatenate the village networks into a single adja-

cency matrix of size n “ 4413. For the GNN and GLM estimates, we trim observations

with propensity scores outside of r0.01, 0.99s. Standard errors are obtained from the

network HAC variance estimator defined in §2.3.

Table 3: Exposure Mapping T
p1q
i

ADM GNN GLM

1 Layer 2 Layer 3 Layer Order 1 Order 2 Order 3

Leader case
Gee -0.052 -0.002 (0.020) -0.004 (0.021) 0.012 (0.017) 0.000 (0.018) -0.003 (0.016) 0.037 (0.014)
Gsc -0.049 0.018 (0.023) 0.044 (0.019) 0.041 (0.019) 0.014 (0.020) 0.023 (0.020) -0.025 (0.012)
Gall -0.050 0.026 (0.026) 0.022 (0.022) 0.029 (0.022) 0.010 (0.023) 0.018 (0.025) -0.038 (0.012)
Leader-adopter case
Gee 0.215 0.096 (0.016) 0.085 (0.033) 0.092 (0.025) 0.086 (0.029) 0.086 (0.027) 0.485 (0.017)
Gsc 0.434 0.032 (0.057) 0.074 (0.022) 0.071 (0.023) 0.073 (0.022) 0.076 (0.020) 0.469 (0.019)
Gall 0.435 0.076 (0.019) 0.066 (0.021) 0.080 (0.016) 0.069 (0.022) 0.122 (0.021) 0.452 (0.020)
Adopter case
Gee 0.423 0.061 (0.017) 0.056 (0.015) 0.055 (0.016) 0.057 (0.01
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the leader case.

First consider the estimand using T
p1q
i , which contrasts microfinance adoption

rates for units with 1 versus 0 initially adopting neighbors. The GNN results are

consistent across L. For the leader case, we obtain precise zeros for almost all es-

timates, including the ADM. For the leader-adopter case, the GNN estimates are

substantially smaller in magnitude than the ADM with an effect size of at most 10

percentage points compared to the smallest ADM estimate of 20 percentage points.

This may be attributed to the use of richer network controls. For the adopter case,

the contrast is even starker. Our estimates are an order of magnitude smaller than

the corresponding ADM estimates. The GLM estimates are typically slightly smaller

than the GNN estimates except for the order-3 polynomials, which are outliers in

terms of magnitude.

The estimand using T
p2q
i contrasts units with 2` versus 0 initially adopting neigh-

bors. The estimates for the leader case are similar to those of T
p1q
i . We find sizeable

effects for the leader-adopter case, almost of the same order as ADM, but the robust-

ness of the result is partly tempered by the large amount of trimming discussed below.

The adopter case sees estimates of around 20 percentage points, whereas the ADM

is double or triple that. Once again the GLM estimates are often slightly smaller

relative to the GNN estimates, except for the order-3 polynomials.

The number of observations trimmed for T
p1q
i is negligible in the leader and adopter
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in the lasso literature, which posit that a high-dimensional regression function is

well-approximated by a function of a relatively small number of covariates.

A Additional Results on GNNs

Primitive conditions for Assumption 5 appear to be beyond the scope of the existing

GNN literature, but we provide some potentially useful intermediate results. Consider

the problem of establishing a rate of convergence for the propensity score:

1

mn

ÿ

iPMn

`

p̂tpi,X,Aq ´ ptpi,X,Aq
˘2 “ oppn´1{2q.

Under network approximate sparsity (Definition 1), the problem simplifies to showing

1

mn

ÿ

iPMn

`

p̂tpi,X,Aq ´ ptpi,XN pi,Lq,AN pi,Lqq
˘2 “ oppn´1{2q. (A.1)

Since p̂tpi,X,Aq is an L-layer GNN, which only uses information from pXN pi,Lq,AN pi,Lqq,
this should well approximate ptpi,XN pi,Lq,AN pi,Lqq under appropriate conditions, so

(A.1) should be more feasible to verify directly.

Farrell et al. (2021) provide a bound analogous to (A.1) for MLPs, which, were it

applicable to our setting, would be of the form

1

n

n
ÿ

i“1

`

p̂tpi,X,Aq´ptpi,XN pi,Lq,AN pi,Lqq
˘2 ď C

ˆ

WL logR

n
logn ` log log n` γ

n
` ε2

˙

(A.2)

with probability at least 1 ´ e´γ . Here W is the number of GNN parameters, C

is a constant that does not depend on n, R depends on the architecture through

the number of hidden neurons, and ε is the function approximation error, a measure

of the ability of the neural network to approximate any function in a desired class.

Establishing a corresponding result for GNNs requires an analog of Lemma 6 of

Farrell et al. (2021), which is a bound on the pseudo-dimension of the GNN class,

and concentration inequalities for ψ-dependent data. Jegelka (2022) surveys the few

available complexity and generalization bounds for GNNs. These are not sufficiently

general for our setup and only apply to settings where the sample consists of many

independent networks.

40
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To use a bound of the form (A.2) to verify Assumption 5, we require knowledge of

how ε varies with key aspects of the architecture, such as W,R, L, n. As a first step

toward obtaining such a result, it is necessary to characterize the function class that

GNNs can approximate. Our next result, which draws heavily from existing results in

the GNN literature, shows that an additional shape restriction on the function class

beyond invariance (§3.3) is required.

A.1 WL Function Class

MLPs can approximate any measurable function (Hornik et al., 1989), so given the

discussion in §3.3, a natural question is whether GNNs can approximate any mea-

surable, invariant function of graph-structured inputs. In other words, is it enough

to require invariance (and regularity conditions), or are stronger restrictions on the

function class necessary? For reasons related to the graph isomorphism problem, it

turns out stronger restrictions are necessary. We next motivate the need for such

restrictions and then state our function approximation result.

Chen et al. (2019) show that, for a function class such as GNNs to approximate

any invariant function, some element of the class must be able to separate any pair of

non-isomorphic graphs. By “separate,” we mean that for any non-isomorphic “labeled

graphs” pX,Aq, pX 1,A1q, the function f satisfies fpX,Aq ‰ fpX 1,A1q.8 Hence, a

function with separating power of this sort solves the graph isomorphism problem,

a problem for which no known polynomial-time solution exists (Kobler et al., 2012;

Morris et al., 2021). Since GNNs can be computed in polynomial time, this suggests

that approximating any invariant function is too demanding of a requirement.

To define the subclass of invariant functions that GNNs can approximate, we

need to take a detour and discuss graph isomorphism tests. The subclass will be

defined by a weaker graph separation criterion than solving the graph isomorphism

problem, in particular one defined by the Weisfeiler-Leman (WL) test. This is a

(generally imperfect) test for graph isomorphism on which almost all practical graph

isomorphism solvers are based (Morris et al., 2021).

Given a labeled graph pX,Aq, the WL test outputs a graph coloring (a vector of
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labels for each unit) according to the following recursive procedure, whose definition
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H2 such that

ph, h1q P ρpFq if and only if fphq “ fph1q for all f P F .

For any two sets of functions E ,F with domain H , we say that E is at most as

separating as F if ρpFq Ď ρpEq.

This is essentially Definition 2 of Azizian and Lelarge (2021). Intuitively, if E is at

most as separating as F , the latter is more complex in the sense that some function

in F can separate weakly more elements of H than any function in E .

Let fWL,L denote the function of pX,Aq with range Σn that outputs the vector

of node colorings from the WL test run for L iterations. Let CpHq be the set of

continuous functions with domain H . For any L P N, define the WL function class

FWLpLq “ tf˚ P CpHq : ρptfWL,Luq Ď ρpf˚qu.

This is the set of continuous functions of pX,Aq that are at most as separating as

the WL test with L iterations.

The next result says that ptp¨q and µ
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In other words, any function in the class FWLpLq can be approximated by L-layer

GNNs in FGNN˚pLq. The result is a consequence of a Stone-Weierstrauss theorem due

to Azizian and Lelarge (2021) and a version of the Morris et al. (2019) and Xu et al.

(2018) result on the equivalent separation power of GNNs and the WL test. The

proof is given below.

The result is essentially Theorem 4 of Azizian and Lelarge (
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T in place of L) and add an additional MLP layer that implements their equation

(26). Here we use the additional MLP layer added to the output of our architecture

(see the paragraph prior to the statement of Theorem A.1). In particular, for any

f P FGNN˚pLq, consider the mapping

pX,Aq ÞÑ
˜

n
ÿ

i“1

fpi,X,Aq, . . . ,
n
ÿ

i“1

fpi,X,Aq
¸

looooooooooooooooooooooomooooooooooooooooooooooon

n times

P R
n

(their (26) in our notation) corresponds to adding a linear output layer L ` 1 that

is implementable by an MLP of the form φL`1phpLq
i , thpLq

j : j P Nnuq. The mapping

remains an element of FGNN˚pLq, which completes the argument for (A.5).

By Theorems VIII.1 and VIII.4 of Grohe (2021), which use finiteness of the support

of Xi, ρpFGNN˚pLqq “ ρptfWL,Luq. That is, L-layer GNNs have the same separation

power as the WL test run for L iterations.

A.2 Disadvantages of Depth

The receptive field is the main consideration when selecting L, but Theorem A.1

provides a second consideration, which is imposing a weaker implicit shape restriction.

It shows that, for GNNs to approximate a target function well, the target must satisfy

a shape restriction stronger than invariance, namely that it is at most as separating

as the WL test with L iterations. The larger the choice of L, the weaker the shape

restriction imposed. However, there are several reasons why shallow architectures

remain preferable.

Low returns to depth. A natural question is how many iterations are required

for the WL test to converge for a given graph, which corresponds to the choice of L

for which the shape restriction is weakest. Unfortunately, the answer is not generally

known, being determined by the topology of the input graph in a complex manner.

However, there is a range of results bounding the number of iterations required for

convergence. For instance, Kiefer and McKay (2020) construct graphs for which the

WL test requires n ´ 1 iterations to converge, so such graphs require n´ 1 layers to

obtain the weakest shape restriction. This makes the estimation problem extremely

high-dimensional, requiring substantially more layers than what is typically required
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than the standard architecture (13) (Dwivedi et al., 2022). These disadvantages may

partly explain the common use in practice of the standard architecture with few

layers.

B Verifying §8 Assumptions

Leung (2022a), §A, verifies analogs of Assumptions 6(d) and 7(c) from an older work-

ing paper version of Kojevnikov et al. (2021). This section repeats the exercise for As-

sumptions 6(d) and 7(c) and (d). We assume throughout that maxtγnps{2q, ψnpsqu ď
expp´cp1 ´ 4{pq´1sq for some c ą 0 and p in Assumption 4(a). As in Leung (2022a),
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and D1
B “ pD1

jqjPB for any B Ď Nn. Using the first equality of (C.3),

ptpi,X,Aq “ P pD1
i ` pDi ´D1

iq P ra, bs, V 1
i ` pVi ´ V 1

i q P rα, βs | X,Aq
ď P pD1

i P ra´ ε, b` εs, V 1
i P rα´ ε, β ` εs | X,Aq

` P p|Di ´D1
i| ą ε | X,Aq ` P p|Vi ´ V 1

i | ą ε | X,Aq
loooooooooooooooooooooooooooooooooomoooooooooooooooooooooooooooooooooon

R0

.

By (C.3), the right-hand side equals

P pD1
i P ra, b́
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Combining (C.6) and (C.7) and using the law of iterated expectations,

|ptpi,X,Aq ´ ptpi,XN pi,rλps`1qq,AN pi,rλps`1qqq| ď λnps` 1q ` 2R0.

Proof of (C.2). Noting that µtpi,X,Aq “ ErYi1iptq | X,As{ptpi,X,Aq, we first

bound the numerator. For B “ N pi, sq, define Y 1
i “ gnpi,sqpi,D1

B,XB,AB, εBq. By

Lemma C.2,

|ErYi1iptq | X,As ´ ErY 1
i 1iptq | X,As| ď γnpsq ` Λnpi, sqnpi, sqηnpsq
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where, using Assumption 4(b),

|R˚
1 | ď λn
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for |R1| ď γnpsq ` Λnpi, sqnpi, sqηnpsq.

Lemma C.3. Define Y 1
i , D

1
i as in Lemma C.2 and 1iptq1 “ 1tD1

i “ d,
řn
j“1AijD

1
j P

∆u. Under Assumptions 2, 1, 3, and 4(a), there exists C ą 0 such that for any

n P N, i P Nn, and s ě 0,

ErYi|1iptq ´ 1iptq1| | X,As ď C p1 ` npi, 1qqηnpsq.

Proof. Recall the definition of a, b, α, β, ε prior to (C.3). Define Vi “ řn

j“1AijDj ,

V 1
i “ řn

j“1AijD
1
j, and C “ t|Di ´D1

i| ď ε, |Vi ´ V 1
i | ď εu. Then

ErYi|1iptq ´ 1iptq1| | X “ x,A “ as
ď ErYi|1iptq ´ 1iptq1| | C,X “ x,A “ as ` C PpCc | X “ x,A “ aq (C.11)

for some universal C ą 0 by Assumptions 1 and 4(a). By Assumption 3,

1iptq “ 1 tDi P ra, bs, Vi P rα, βsu and 1iptq1 “ 1 tD1
i P ra, bs, V 1

i P rα, βsu .

Under event C,

1
 

Di P ra, bs, Vi P rα, βs
(

“ 1tD1
i ` pDi ´D1

iq P ra, bs, V 1
i ` pVi ´ V 1

i q P rα, βsu
ď 1

 

D1
i P ra´ ε, b` εs, V 1

i P rα´ ε 1 q ;́ V i � Ds
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Lipschitz functions on R
d, Lippfq be the Lipschitz constant of f P Ld, and

Pnph, h1; sq “ tpH,H 1q : H,H 1 Ď Nn, |H | “ h, |H 1| “ h1, `ApH,H 1q ě su .

Definition C.1. A triangular array tZiuni“1 is conditionally ψ-dependent given Fn if

there exist C P p0,8q and an Fn-measurable sequence tψnpsqus,nPN with ψnp0q “ 1

for all n such that

|CovpfpZHq, f 1pZH 1qq| ď Chh1p‖f‖8 ` Lippfqqp‖f 1‖8 ` Lippf 1qqψnpsq a.s. (C.12)

for all n, h, h1 P N; s ą 0; f P Lh; f
1 P Lh1; and pH,H 1q P Pnph, h1; sq. We call ψnpsq

the dependence coefficient of tZiuni“1.

Lemma C.4. Under Assumptions 1, 2, 3, 4(a) and (b), and 6(a) and (b), for any

t, t1 P T , tϕt,t1piquni“1 is conditionally ψ-dependent given pX,Aq (Definition C.1) with

dependence coefficient ψnpsq defined in (15).

Proof. Let Fn be the σ-algebra generated by pX,Aq, ph, h1q P N ˆ N, pf, f 1q P
Lh ˆ Lh1, s ą 0, and pH,H 1q P Pnph, h1; sq. Define Zi “ ϕt,t1piq, ZH “ pZiqiPH ,

ξ “ fpZHq, ζ “ f 1pZH 1q, and

D
psq
i “ hnpi,sqpi,XN pi,sq,AN pi,sq,νN pi,sqq.

For D
psq
N pi,s1q “ pDpsq

j qjPN pi,s1q, let

1
psq
i ptq “ 1tfnpi,s{2qpi,Dps{2q

N pi,s{2q,AN pi,s{2qq “ tu,
Y

psq
i “ gnpi,s{2qpi,Dps{2q

N pi,s{2q,XN pi,s{2q,AN pi,s{2q, εN pi,s{2qq,

Z
psq
i “ 1

psq
i ptqpY psq

i ´ µtpi,X,Aqq
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By Assumption 6(a), pZps{2,ξq
i qiPH KK pZps{2,ζq

j qjPH 1 | Fn, so

|Covpξ, ζ | Fnq| ď |Covpξ ´ ξps{2q, ζ | Fnq| ` |Covpξps{2q, ζ ´ ζ ps{2q | Fnq|
ď 2‖f 1‖8Er|ξ ´ ξps{2q| | Fns ` 2‖f‖8Er|ζ ´ ζ ps{2q| | Fns
ď 2

`

h‖f 1‖8Lippfq ` h1‖f‖8Lippf 1q
˘

max
iPN



Leung and Loupos

Lh ˆ Lh1, s ą 0, pH,H 1q P Pnph, h1; sq,

Y
psq
i “ gnpi,sqpi,DN pi,sq,XN pi,sq,AN pi,sq, εN pi,sqq,

ξ “ fppYiqiPHq, ζ “ f 1ppYiqiPH 1q, ξpsq “ fppY psq
i qiPHq, and ζ psq “ f 1ppY psq

i qiPH 1q. By

Assumption 6(a),

|Covpξ, ζ | F 1
nq| ď |Covpξ ´ ξps{2q, ζ | F 1

nq| ` |Covpξps{2q, ζ ´ ζ ps{2q | F 1
nq|

ď 2‖f 1‖8Er|ξ ´ ξps{2q| | F 1
ns ` 2‖f‖8Er|ζ ´ ζ ps{2q| | F 1

ns
ď 2

`

h‖f 1‖8Lippfq ` h1‖f‖8Lippf 1q
˘

max
iPNn

Er|Yi ´ Y
ps{2q
i | | F 1

ns

ď 2
`

h‖f 1‖8Lippfq ` h1‖f‖8Lippf 1q
˘

γnps{2q,

the last line using Assumption 2. Given ψ-dependence, the claim follows from Corol-

lary A.2 of Kojevnikov et al.
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p̂tpi,X,Aq. For some universal constants C,C 1 ą 0, ErR2
1ts equals

1

mn

ÿ

iPMn

ÿ

jPMn

E

„

E rpYi ´ µiqpYj ´ µjq | D,X,As 1iptq1jptqp
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p̂tpi,X,Aq, and

∆iptq “ pµ̂tpiq ´ µtpiqqptpiq ´ 1iptq
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