GRAPH NEURAL NETWORKS FOR CAUSAL INFERENCE UNDER NETWORK CONFOUNDING

Mṛc ae P Leun † Pante ṛs Loupos ‡

Marc ,

1 Introduction

```
U VA
      11
                                    11
                     U VA
                                                                  X
        X
                             m
                                                     y,
                                                                               11
                                                                             oldsymbol{X}_{i}
                                                                      A
      H
                                                            1 1
11
                                                    П
                                           11
```

A I #

1 ,

1.2 Related Literature

2 Setup

$$\mathsf{Y}_{\mathsf{i}} = \mathsf{g}_{\mathsf{n}}(\mathsf{i}, D, X, A, arepsilon) \qquad \mathsf{D}_{\mathsf{i}} = \mathsf{h}_{\mathsf{n}}(\mathsf{i}, X, A,
u$$
 ,

$$X$$
 $(X_i \stackrel{\textbf{n}}{}_{i=1})$ X $(X_i \stackrel{\textbf{n}}{}_{i=1})$ $X'_i Y, D, \varepsilon,$ v $(g_n, h_n)_{n \in \mathbb{N}}$ $g_n($ \mathbb{R} $h_n($ $0, 1$ (Y, D, X, A) (X, A)

1 11

 $\mathbf{E} \mathbf{a} \mathbf{p}^{\mathbf{j}-1}$

$$Y_i \qquad \div \ \frac{ \stackrel{n}{\underset{j=1}{j=1}} A_{ij} Y_j}{ \stackrel{n}{\underset{j=1}{n}} A_{ij}} \ \div \frac{ \stackrel{n}{\underset{j=1}{n}} A_{ij} Z_j'}{ \stackrel{n}{\underset{j=1}{n}} A_{ij}} \quad \div Z_j' \quad \div \ _i,$$

$$Z_i = (D_i, X_i')'$$

$$A \qquad \qquad Y \qquad \frac{1}{1-1+Z} + \frac{\mathbf{\hat{y}}}{k} \stackrel{k}{A}^{k+1}Z + \frac{\mathbf{\hat{y}}}{k=0} \stackrel{k}{A}^{k}\varepsilon.$$

$$Y_{i} \qquad g_{n}(\mathbf{i},D,X,A,\varepsilon)$$

$$E \ a \ \mathbf{\hat{y}} \qquad \stackrel{*}{\underset{j=1}{n}} A_{ij} D_{j} \qquad \stackrel{*}{\underset{j=1}{n}} A_{ij} Z_{j}' \qquad \div Z_{i}' \qquad \div i \qquad 0 \qquad .$$

$$U \qquad \qquad \qquad (X,A,\nu)$$

$$D \qquad \qquad D_{i} \qquad \qquad h_{n}(\mathbf{i},X,A,\nu)$$

$$D \qquad \qquad D_{i} \qquad \qquad h_{n}(\mathbf{i},X,A,\nu)$$

$$D_{j} \qquad \qquad i \qquad \qquad (X,X,A,\nu)$$

$$D_{j} \qquad \qquad i \qquad \qquad i' \qquad \qquad (X,X,A,\nu)$$

$$D_{j} \qquad \qquad i \qquad \qquad i' \qquad \qquad (X,X,A,\nu)$$

$$D_{j} \qquad \qquad i \qquad \qquad i' \qquad \qquad (X,X,A,\nu)$$

$$V_{i} \qquad \qquad D_{i} \qquad \qquad h_{n}(\mathbf{i},X,A,\nu)$$

$$V_{i} \qquad \qquad V_{i} \qquad$$

Assu pt on 1 U o n_y n \mathbb{N} , ε ν X, AA (X,A) (X,A)

 A_{S}

IS ${f n}({f S}$, S Y_i S i, i, i′ D_{i} E a p $\sup_{\mathbf{n} = \mathbf{n}} (\mathbf{s} - \mathbf{C}) \mid^{\mathbf{s}}$ $\mathbf{C} = 0$ $\sup_{\mathbf{n}} \mathbf{n}(\mathbf{s})$ I = I, $Y_i = I$ $D_{\mathcal{N}(\mathbf{i},\mathbf{K})}$, $n(\mathbf{s} \quad \mathbf{c1} \quad \mathbf{s} \quad \mathbf{K})$ Dc I W_{i} X_{i} $n(s \quad 0 \quad || s$

2.1 Related Literature

 V_i $g(D_i, X_i, i)$ i D_i X_i . T_i $f_n(i, D, A)$ W_i $q_n(i, X, A)$ $f_n($ $q_n($ n A

1 n0 00 $Y_i \quad g(T_i, W_i, \ _i \qquad \quad _i \quad T_i \quad W_i, \quad$ T_i $I W_i$ Ţ T_{i} W_i $W_i \qquad X_i, \overset{\mathbf{\hat{y}}}{\longrightarrow} A_{ij},$ D_{i} , $\mathbf{\hat{y}}$ $A_{ij}D_{j}$ T_{i} D^{-1} T_i Y_{i} 11 $oldsymbol{D}_{\mathcal{N}(\mathbf{i},1)}$, W_{i} Κ / **K** A $\boldsymbol{\mathit{D}}_{\mathcal{N}(\mathbf{i},\mathbf{K})}$ A I T_i 1, $I W_i$ / U W_{i} 11 $X_{i,i}$ 11 \boldsymbol{X} \boldsymbol{A} $(\boldsymbol{X}, \boldsymbol{A})$ 11

 \mathbf{t} (1,0 \mathbf{t}' (0,0), $\mathcal{M}_{\mathbf{n}}$ $\mathbf{n}(\mathbf{i},1 \mid \mathcal{N}(\mathbf{i},1 \mid \mathbf{i}), \mathbb{R}_{+} \mathbf{0}$

$$(X,A,\nu)$$
, T_i Y_i (t,t') $(t,t'$

$$\begin{split} \hat{}_{i}(t,t') &= \frac{1}{\hat{p}_{t}} \frac{T_{i} - t}{\hat{p}_{t}(i,X,A)} \frac{\hat{\mu}_{t}(i,X,A)}{\hat{p}_{t}(i,X,A)} + \hat{\mu}_{t}(i,X,A) \\ &= \frac{1}{\hat{p}_{t^{1}}(i,X,A)} \frac{\hat{\mu}_{t^{1}}(i,X,A)}{\hat{p}_{t^{1}}(i,X,A)} - \hat{\mu}_{t^{1}}(i,X,A) \ . \end{split}$$

3.1 Architecture

,

($\hat{f_{\rm GNN}} \quad \mathop{\rm argmin}_{f \in \mathcal{F}_{\rm GNN}(\textbf{L})}_{\textbf{i} \in}$

A , \mathbf{f} $\mathcal{F}_{\mathrm{GNN}}(\mathbf{L}$,

roposton
1
 u o o ny n \mathbb{N} n u on ,

$$\mathbf{f_n}(\mathbf{i},D,A-\mathbf{f_n}($$
 (i , $(D$, $(A$,
$$\mathbf{g_n}(\mathbf{i},D,X,A,\varepsilon-\mathbf{g_n}($$
 (i , $(D$, $(X$, $(A$, $(\varepsilon$, n

1

 $_{\substack{\textbf{t},\textbf{t}^1}}(\textbf{i}\quad \overset{\textbf{n}}{\textbf{i}=1}$

1,

 $\mathbf{t},\mathbf{t}^1 (\mathbf{i} \quad \mathbf{n}_{\mathbf{i}=1}^n$

 $\Lambda_{\mathbf{n}}(\mathbf{s} = 2\mathbf{M})$

1 A

. or $n \sim t,t'$ $n \sim t,t'$ $n \sim t,t'$ $n \sim t,t'$ $n \sim t,t'$

1 1 1

5 Approximate Sparsity

A , , L , $(oldsymbol{X}_{\mathcal{N}(\mathbf{i},\mathsf{L})}$

6.2 Nonparametric Estimators

$$\Gamma_2($$

		L = 1			L=2			L = 3	
n e e	6,76,76,7 1 1 1	6,76,76,7 1-1-1	1 1 1	1 1 1	6,76,76,7 1-1-1	1 / /	6,76,76,7 1-1-1	1 1 1	ajlajla j
$\hat{ au}(1,0)$									
.J. CJ. .J.	.	(.	.	,	((w. w.	.	***

si u ations, he esti and is (1,0) = 0, treated \approx

I

7.1 Comparison with He and Song (2024)

n 4413 , (0.01, 0.99

 $T_{i}^{(1)}$

ADM		GNN			GLM					
		Layer		Layer		Layer		Order	Order	Order
Leader case G_{ee}				• •		• •				
\mathbf{G}_{sc}	er case	• •	e e	• •	• •	• •	• • •	• • •	11 11 5	00 500
	• •	• • • • • • • • • • • • • • • • • • •	e e :	6 C C	• • •	6 6 5 6 6		e e e e	66 66 66 66 67 66	6
Adopter case G_{ee} , G_{sc} , G_{all}	e e e e	e e e e s	0 0 5 0 0	6 6 5 6 6	0 0 52 0 0		•	6 6 6 6 6 6 5	005 00 00 00	6

n = 4413

A Additional Results on GNNs

 $\frac{1}{\mathsf{m_n}} \overset{\mathbf{\ddot{y}}}{\underset{\mathbf{i} \in \mathcal{M}}{}} \hat{\mathbf{p_t}}(\mathbf{i}, \boldsymbol{X}, \boldsymbol{A} - \mathbf{p_t}(\mathbf{i}, \boldsymbol{X}, \boldsymbol{A})^2 - \mathbf{o_p}(\mathbf{n}^{-1/2}).$ U $\frac{1}{\mathsf{n}} \overset{\mathbf{\dot{y}}}{\overset{}{\mathsf{p}}} \overset{\hat{\mathsf{p}}}{\mathsf{t}} (\mathsf{i}, \boldsymbol{X}, \boldsymbol{A} - \mathsf{p}_{\mathsf{t}}(\mathsf{i}, \boldsymbol{X}_{\mathcal{N}(\mathsf{i}, \mathsf{L})}, \boldsymbol{A}_{\mathcal{N}(\mathsf{i}, \mathsf{L})})^{2} - \mathsf{C} \overset{\hat{\mathsf{w}} \mathsf{L} \log \mathsf{R}}{\mathsf{n}} \log \mathsf{n} + \frac{\log \log \mathsf{n} + 1}{\mathsf{n}} + \frac{1}{2} \overset{\hat{\mathsf{p}}}{\mathsf{n}} + \frac{1}{2} \overset{\hat{\mathsf{v}}}{\mathsf{n}} + \frac{1}{2} \overset{\hat{\mathsf{v}}}{\mathsf{n}}$ C

A.1 WL Function Class

```
(X,A,(X',A')
                                               f(X,A \neq f(X',A')
                                        W
                                                         n W
                                                         1 11
                     (\boldsymbol{X}, \boldsymbol{A})
```

 H^2

T L L A A I A I A
$$\mathbf{F}_{\mathrm{GNN}}$$
 (L , $\mathbf{F}_{\mathrm{GNN}}$)

A.2 Disadvantages of Depth

 $m{X_{i,}}$ ($\mathcal{F}_{\mathrm{GNN}}$ ($m{L}$ ($m{f}$ $_{L,L}$

```
owr turns to 'pt A

U

n 1

n 1
```

B Verifying §8 Assumptions

A
$$\mathbf{A}$$
 \mathbf{A} \mathbf{A}

$$oldsymbol{D_B'}$$
 $(oldsymbol{D_j'}_{j\ j\in B}$ $oldsymbol{B}$ $oldsymbol{\mathcal{N}_n}$ $oldsymbol{\mathrm{U}}$

 \mathbf{R}_0

,

 $(D'_i | a, b$

 $|\mathbf{p_t}(\mathbf{i}, \boldsymbol{X}, \boldsymbol{A} - \mathbf{p_t}(\mathbf{i}, \boldsymbol{X}_{\mathcal{N}(\mathbf{i}, \mathbf{r}_{\lambda}(\mathbf{s}+1))}, \boldsymbol{A}_{\mathcal{N}(\mathbf{i}, \mathbf{r}_{\lambda}(\mathbf{s}+1))}| - \mathbf{n}(\mathbf{s} + 1 + 2\mathbf{R}_0.$

, A ,

 $|\mathbf{R}_1|$ n

$$|\mathbf{R}_1|$$
 $_{\mathbf{n}}(\mathbf{s} + \Lambda_{\mathbf{n}}(\mathbf{i}, \mathbf{s} \mathbf{n}(\mathbf{i}, \mathbf{s} \mathbf{n}))$

$$|Y_i|1_i(t \quad 1_i(t') \quad X, A \quad C(1 + n(i, 1 \quad n(s)))$$

$$|\mathbf{Y_i}|\mathbf{1_i}(\mathbf{t} \quad \mathbf{1_i}(\mathbf{t} \ ' | \ X \quad x, A \quad a$$

$$|\mathbf{Y_i}|\mathbf{1_i}(\mathbf{t} \quad \mathbf{1_i}(\mathbf{t} \ ' | \ \mathcal{C}, X \quad x, A \quad a \ +\mathbf{C} \quad (\mathcal{C}^c \quad X \quad x, A \quad a$$

$$\mathbf{1}_{i}(t \ \ \mathbf{1} \ D_{i} \ | a,b \ , \ V_{i} \ | \ , \\ \mathbf{1}_{i}(t \ ' \ \ \mathbf{1} \ D_{i}' \ | a,b \ , \ V_{i}' \ | \ , \quad .$$

U C,

$$\mathbb{R}^{\mathsf{d}}$$
, (f f \mathcal{L}_{d} ,

$$\mathcal{P}_{n}(h,h';s) = (H,H':H,H') \mathcal{N}_{n}, H h, H' h', A(H,H') > s$$
.

D
$$\mathfrak{h}$$
 ton \mathbf{C}^1 A $\mathfrak{Z}_{\mathbf{i}}$ $\overset{\mathbf{n}}{\mathbf{i}=1}$ on on \mathfrak{z} n n n $\mathcal{F}_{\mathbf{n}}$ \mathbf{C} $(0, \mathcal{F}_{\mathbf{n}})$ $\mathfrak{f}_{\mathbf{n}}$ $\mathfrak{f}_{\mathbf{n}}$ $\mathfrak{f}_{\mathbf{n}}$ $\mathfrak{f}_{\mathbf{n}}$ $\mathfrak{f}_{\mathbf{n}}$ $\mathfrak{f}_{\mathbf{n}}$ $\mathfrak{f}_{\mathbf{n}}$ $\mathfrak{f}_{\mathbf{n}}$

$$\| (\mathbf{f}(Z_{\mathsf{H}}^{}),\mathbf{f}'(Z_{\mathsf{H}^{1}}^{}) - \mathsf{Chh}'(\|\mathbf{f}\|_{\infty}^{} + (\mathbf{f}^{}(\|\mathbf{f}'\|_{\infty}^{} + (\mathbf{f}' - \mathbf{h}')\mathbf{s}))) \|_{\infty}$$

$$\mathsf{D}_{\mathbf{i}}^{(\mathsf{s})} \quad \mathsf{h}_{\mathsf{n}(\mathbf{i},\mathsf{s})}(\mathbf{i},X_{\mathcal{N}(\mathbf{i},\mathsf{s})},A_{\mathcal{N}(\mathbf{i},\mathsf{s})},
u_{\mathcal{N}(\mathbf{i},\mathsf{s})}$$
 .

$$\begin{array}{lll} \mathbf{\mathcal{D}}_{\mathcal{N}(\textbf{i},\textbf{s}^1)}^{(s)} & (\textbf{D}_{\textbf{j}}^{(s)} \ _{\textbf{j} \in \mathcal{N}(\textbf{i},\textbf{s}^1)}, \textbf{I} \\ & \mathbf{1}_{\textbf{i}}^{(s)}(t - 1 \ f_{\textbf{n}(\textbf{i},\textbf{s}/2)}(\textbf{i}, \mathbf{\mathcal{D}}_{\mathcal{N}(\textbf{i},\textbf{s}/2)}^{(s/2)}, \mathbf{\mathcal{A}}_{\mathcal{N}(\textbf{i},\textbf{s}/2)} \ t \ , \\ & \mathbf{Y}_{\textbf{i}}^{(s)} & g_{\textbf{n}(\textbf{i},\textbf{s}/2)}(\textbf{i}, \mathbf{\mathcal{D}}_{\mathcal{N}(\textbf{i},\textbf{s}/2)}^{(s/2)}, \mathbf{\mathcal{X}}_{\mathcal{N}(\textbf{i},\textbf{s}/2)}, \mathbf{\mathcal{A}}_{\mathcal{N}(\textbf{i},\textbf{s}/2)}, \boldsymbol{\varepsilon}_{\mathcal{N}(\textbf{i},\textbf{s}/2)} \ , \\ & \mathbf{Z}_{\textbf{i}}^{(s)} & \mathbf{1}_{\textbf{i}}^{(s)}(t \ (\mathbf{Y}_{\textbf{i}}^{(s)} - \boldsymbol{\mu}_{\textbf{t}}(\textbf{i}, \mathbf{X}, \mathbf{A}) \end{array}$$

$$\mathcal{L}_{\mathbf{h}}$$
 $\mathcal{L}_{\mathbf{h}^1}$, \mathbf{s} 0 , (\mathbf{H},\mathbf{H}') $\mathcal{P}_{\mathbf{n}}(\mathbf{h},\mathbf{h}';\mathbf{s})$, $\mathbf{Y}_{\mathbf{i}}^{(\mathbf{s})}$ $\mathbf{g}_{\mathbf{n}(\mathbf{i},\mathbf{s})}(\mathbf{i},\mathcal{D}_{\mathcal{N}(\mathbf{i},\mathbf{s})},X_{\mathcal{N}(\mathbf{i},\mathbf{s})},A_{\mathcal{N}(\mathbf{i},\mathbf{s})},\varepsilon_{\mathcal{N}(\mathbf{i},\mathbf{s})}$,

$$f((Y_{i\ i\in H}\ ,\qquad f'((Y_{i\ i\in H^1}\ ,\quad ^{(s)}\ f((Y_{i}^{\ (s)}\ _{i\in H}\ ,\qquad ^{(s)}\ f'((Y_{i}^{\ (s)}\ _{i\in H^1}$$
 A

$$\hat{\mathbf{p}}_{\mathbf{t}}(\mathbf{i}, oldsymbol{X}, oldsymbol{A}$$
 ,

$$\Delta_{\textbf{i}}(\textbf{t} - (\hat{\mu}_{\textbf{t}}(\textbf{i} - \mu_{\textbf{t}}(\textbf{i} - \textbf{p}_{\textbf{t}}(\textbf{i} - \textbf{1}_{\textbf{i}}(\textbf{t}$$

Bronst nhttps://towardsdatascience.com/do/we/need/deep/graph/neural/networks /be 2d ec c A _ J Bruna . Co n an' \square, ov, , n - XXC n Z war C n an J Bruna "VI C rno u ov 🐷 D C tv r, ov p D r r E Dw o C Hans n an Jons ono ou nCorso G Cavan , D B a n an ' "VI D Groot i oun o A n A o onD. ra La F C Gar a J no Donovan an A an _ i oun o ono , , 5 , Dwv , C Jos, aur nt Y B n, o an X Br sson X = X = 0po n an' B / ann, ${f E}$ U A Farr X n Xsra, _ . yan an` ono , ,

Forast, r E A, rd , an 'F , an 'F

 $A \qquad \qquad n \qquad \qquad A \quad o \qquad on, \qquad ,$

Gro A A

oun o

H X an' on , , o o o n

Horn o an'H t, 11

r an'B A A

 \mathbf{Zop}_{X} \mathcal{A}^{\prime} \mathcal{A}^{\prime