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The presence of interfaces (such as cracks, membranes and bi-material boundaries) in hydrated porous
media may have a significant effect on the nature of their deformation and interstitial fluid flow. In this
context, the present paper introduces a mathematical framework to describe the mechanical behavior of
interfaces in an elastic porous media filled with an inviscid fluid. While bulk deformation and flow are
characterized by displacement gradient and variations in the fluid chemical potential, their counterpart
in the interface are derived by defining adequate projections of strains and flow onto the plane of the
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2.2. Surface operations and projections

Before we define the kinematics of deformation and flow within
interfaces, it is important to discuss some useful mathematical
concepts related to the projection of vector and tensor fields on
two-dimensional surfaces. Let us first consider a surface C in a
three-dimensional domain X across which a continuum field a
(that can be a scalar, a vector or a tensor) is discontinuous. Let us
denote as a+ and a� the value of this field on each side of C. The
jump, or discontinuity, of a across C



deformations, the bulk strain and spin are represented by the sym-
metric tensor E and the antisymmetric tensor W:

E ¼ 1
2
ðruþ ðruÞTÞ and W ¼ 1

2
ðru� ðruÞTÞ; ð12Þ

respectively, where r is the differential operator and the super-
script T denotes the transpose operator. In contrast to the bulk,
interfaces are seen as lines of discontinuities in terms of displace-



3.1.3. Relationship between macroscopic and microscopic interface
strains

To establish a relation between macroscopic and microscopic
deformation, we first introduce the microscopic displacement gra-
dient ~v ¼ @~u=@n where ~uðnn; ns; ntÞ is the microscopic solid dis-
placement that is measured in the local coordinate system
associated with the interface. Introducing a first-order Taylor-like
approximation for the function ~vðnn; ns; ntÞ in the normal direction
n, we write:

~vðnn; nt; nsÞ ¼ h~viðnt ; nsÞ þ hh~viiðnt ; nsÞnn þ o n2
n

� �
ð22Þ

where h~vi and hh~vii are the thickness averages of the displacement
gradients and its normal variation, respectively. Note that the above
approximation differs from the standard Taylor series expansion in



while the normal component is characterized in terms of the dis-
continuity in thermodynamic potential l across C:

f?s ¼ �½l�=h: ð35Þ

Here, we note that the factor 1/h was used for dimension purposes.
However, using similar arguments as for the definition of t?s in (17),
the relevant normal driving force will be characterized by the quan-
tity �[l] in the remainder of this paper.



~qðnn; nt; nsÞ ¼ qk
s þ q?s n

� �
ðnt ; nsÞ þ qmðnt ; nsÞ

nn

h
þ o n2

n

� �
; ð47Þ

which will prove useful to explore mass conservation in the inter-
face. Let us now concentrate on the governing equations describing
the deformation and fluid flow within a biphasic medium with
interfaces. For this, we consider two fundamental principles of con-
tinuum mechanics: (a) the conservation of mass and (b) the conser-
vation of momentum.

4. Mass conservation

In order to write the balance of mass in the mixture, it is impor-
tant to introduce various measures of mass densities in the bulk
and in the interface. In the bulk, a particularly useful definition is
that of the effective mass density of fluid and solid per unit volume
of mixture, given by

qf ¼ /qf
t and qs ¼ ð1� /Þqs

t ; ð48Þ

respectively, where the subscript t denotes the true density of a
constituent. Within interfaces, solid densities and porosities may
be significantly different from their bulk counterparts. Consistent
with our definition of porosities, we consider two macroscopic mea-
sures of interface densities �qa and ��qa representing the average mass
of constituent a (a = s, f) per unit area and its average normal vari-
ation within the interface, respectively. They are defined as follows:

�qa ¼ hh~qai; ��qa ¼ h2hh~qaii ð49Þ

where the microscopic effective fluid and solid densities are
~qf ¼ ~/~qf

t and ~qs ¼ ð1� ~/Þ~qs
t in which the notation ~qa

t is used for
the true density of constituent a. Note that the presence of the
interface thickness h in the above equations is necessary so that
the interface densities are measures of mass per unit area. To relate
microscopic and macroscopic densities, let us now consider a linear
approximation of the distribution of mass density across the inter-
face as follows (Fig. 5):

~qaðnn; nt ; nsÞ ¼ h~qaiðnt; nsÞ þ hh~qaiiðnt ; n



Using the fact that r � ~v ¼ _~ev and using the linear approximations
(25) and (51) for volumetric deformation and density, we obtain
the zeroth and first-order equations for solid mass conservation in
the interface:

D�qs

Dt
þ �qs _ev

s þ ��qsI _ev
m ¼ 0 ð58Þ

D��qs

Dt
þ ��qs _ev

s þ �qs _ev
m ¼ 0; ð59Þ

where the quantity I is a moment of inertia-like quantity defined as:

I ¼ 1

h3

Z h=2

�h=2
n2

ndnn ¼ 1
12

:

Note that (58) describes the change in interface density �qs



@



applying the divergence theorem. This leads to an alternative
expression of the variation of internal energy:

dEint ¼�
Z

X
divT �dudVþ

Z
C
ðts �d½u��divkTs �dfug

�divkTm �d½u�ÞdS�
Z

C
½ðT �nÞ �du�dSþ

Z
@X
ðT � �nÞ �dudS

þ
Z
‘i

ðTs �mÞ �dud‘þ
Z
‘e

ððTs �mÞ �dfugþðTm �mÞ �d½u�Þd‘ ð84Þ

where �n is the unit vector normal to the boundary oX and m is the
unit vector that is tangent to interface C. Here, we used the fact that
the discontinuity in displacement vanishes at the interface bound-
ary (when it does not intersect with oX). In other words, we en-
forced the condition [u] = 0 and {u} = u on ‘i. Furthermore, using
the fact that,

½ðT � nÞ � du� ¼ ½T � n� � fdug þ fT � ng � ½du� ð85Þ

and realizing that:Z
‘i

ðTs � mÞ � dud‘ ¼
Z

X
ðTs �mÞdðx� x‘i Þ � dudV ð86Þ

where dðx� x‘i Þ is the Dirac delta function, the quantity dEint can be
rewritten in the more convenient form:

dEint ¼
Z

X
ð�divTþ ðTs �mÞdðx� x‘i ÞÞ � dudV

þ
Z

C
ts � divkTm � fT � ng

� �
� d½u� þ ð�divkTs

� ½T � n�Þ � dfugdSþ
Z
@X
ðT � nÞ � dudS

þ
Z
‘e

ððTs �mÞ � dhui þ ðTm � mÞ � d½u�Þd‘: ð87Þ

It is now possible to substitute (87) and (83) into (82) to obtain an
suitable integral form of the principle of virtual work. Using the fact
that the expression is true for any arbitrary fields du, {du} and [du]
that satisfy the following conditions on the Dirichlet boundaries:

du ¼ 0 on @Xu; d½u� ¼ 0 on ‘u
e and dfug ¼ 0 on ‘u

e ;

the following differential equations can be obtained:

divTþ b� ðTs � mÞdðx j
/F2 1 Tf
5.4238 0 0 5.4757 86.5134 271.8992 Tm
(s)Tj
/F104.2(:)]TJ
/F2 1 Tf
8.3446 0 0 8.4243 32.710 TD
(d105 s)T86.5 126.7653 273.1464 Tm
.2219 Tc
(�f)Tj
/F5 1 Tf
1.48t(n)2F2 1m
(u)Tj
0 Tf
.5.00016 .538 0owi1 Tf
.99=a
1.48t(n)2F2 1m
(u)Tj
0 Tf
.5.00016 .538 0owi1 Tf
.99=a
1.48t(n)2F2 1m
(u)Tj
0 Tf






about the normal vector n. Furthermore, we assume that the



general case, the interface response is described in terms of a large
number of elastic constants for deformation and permeabilities
characterizing a wide variety of phenomena occurring at the inter-
face. However, we showed that by considering the simple case of
isotropic, uncoupled interfaces, the constitutive response could
be reduced to only five elastic constants and three permeabilities,
making the proposed formulation more tractable. Although we
only considered the case in which the fluid potential energy de-
pends on gravity and pressure, the formulation can easily be ex-
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