Generating the Hopf Fibration Experimentally in Nematic Liquid Crystals
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1(RP?), while a point boundary, i.e., a hole in the surface,
carries a Z charge associated with  ,(RP?). To illustrate,
the surface , for a toron is shown in Figs. 1(c) and 1(d).
It is the set of all points in the material where the director
is perpendicular to 2 and forms a surface that connects
the two point defects at the “top” and “bottom™ of
the toron.

The surfaces, however, do not carry enough information
to determine the point charges. In order to capture this



There is an important constraint on the colors that may



Q=U = tan(2 ), where J is the amplitude of the signal.
Here n is an exponent depending on the imaging modality;
n = 4 for the case of fluorescence confocal microscopy
[20,21], n = 6 for 3PEF-PM with fluorescence detection
without a polarizer [18], and n = 8 for coherent anti-
Stokes Raman scattering polarizing microscopy with line-
arly polarized detection collinear with the polarization of
excitation light. We then assume that we can shift and
normalize the calculated I from the data, so that it takes
value from 0 to 1 and the nth root of I gives us sin . The
shift is justified in this case, as we expect that away from
the toron the director is actually normal to the top and
bottom surfaces, along the surface normal, and hence

= 0 there. The angle  then gives us the angle of the
polarization projected to the xy plane, and we can recon-
struct the director A from and

To go from this to the colored surface numerically, we
reflect the director field so that it lies in the upper half of
the sphere; i.e., if cos <0, we take h — —A. Using
PARAVIEW [19], we then view the isocontour with n, close
to zero. Though one might want to take a slice with n, zero,
the nonorientability of the line field makes it difficult to
exclude the artificial *“branch cuts’ where any reconstruc-
tion assigns adjacent grid points to different branches of A,
for example, when A happens to be adjacent to a data point
of —A. The downside of our approach is that what should
be one surface at n, = 0 is actually two nearby surfaces
n, ==+
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